Graduate Certificate in Computational and Information Science

Testimonials from recent graduates

"Pursuing the certificate in computational and information science during my Ph.D. empowered me to developed novel research methods and to employ state-of-the-art parallel paradigms in my workflow. Thanks to the excellent training on high-performance computing and the support of PICSciE staff, my research is now at the forefront of what is done in my field." -  Noemi Vergopolan, Civil and Environmental Engineering

I would recommend the PICSciE certificate program for anyone in the sciences or engineering who uses computation in their research, even an experimentalist who only uses it for data processing. The skills you learn, including good programming practice, numerical methods, and big data analysis, are highly transferable regardless of what your plans are after graduation. In one instance, discussing a coarse project from the program with a company representative at a conference was enough to get me an interview at the company!" - Bruce Perry, Mechanical and Aerospace Engineering

"I was very fortunate and received Wallace Memorial Fellowship from the Princeton Graduate School in 2014, and I think Kevin Chen was awarded this last year which is interesting since both were in the graduate certificate program! I think this is directly testament to the quality of the program aiding us in our computational pursuits. It was an excellent training for my post-graduate career plans as an engineer/scientist." - George Khoury, Chemical and Biological Engineering 

"This program not only introduced me to fundamental best-practices in programming like version control systems, automated documentation generation, and object abstraction, but also allowed me to deepen my understanding in topics relevant to research, including code optimization and machine learning. It was an invaluable part of my time at Princeton, and I’ve recommended the program to all of my friends doing computational work." - Alexander Holiday, Chemical and Biological Engineering

 

Introduction and Rationale

Computation is now a crucial tool for discovery in the sciences, engineering, and increasingly so in the humanities. Scientific computation is also a diverse field. It requires a working knowledge of numerical analysis (to develop new and more accurate algorithms), best-practices in software engineering (to implement and maintain ever-growing scientific software systems), computer science (to exploit emerging trends in hardware and programming practices), and domain-specific expertise.

The graduate certificate in computational and information science is only open to Princeton University graduate students who are currently enrolled. It is designed to recognize the achievements of students who have undertaken comprehensive training in these topics, both through formal course work and through research in their subject area.

The certificate program was originally proposed and designed to be part of the Program in Integrative Information, Computer and Application Sciences (PICASso) by Professor J.P. Singh, with the resources required to administer the program now provided by the Princeton Institute for Computational Science and Engineering (PICSciE).


Certificate Requirements

To earn the certificate, students must complete four requirements: (1) take for credit and pass two core courses, (2) take for credit and pass one approved elective course, usually this is a course specific to their research discipline, (3) participate in the colloquium with other program participants at the conclusion of the program, and (4) write a thesis which contains a significant computational component, as judged by the thesis advisor who must write a short letter to certify this component.

Scroll down for more details or go to the FAQ page for additional information.

Online application is now available, and is on-going throughout the year.

The following describes in more detail each of these requirements:


Core Courses

Students must take two core courses.  This requirement is designed to guarantee all students who earn the certificate have a solid foundation in the basic principles of scientific computation. The core courses are:

APC 524: Software Engineering for Scientific Computing (Fall semester).

Covers the tools and techniques that are crucial for effective use of computation in any discipline. Topics include structured programming in compiled versus scripting languages, software management tools, debugging, profiling and optimization, and parallel programming for both shared and distributed memory systems.
 

APC 523: Numerical Algorithms for Scientific Computing (Spring semester).

A broad introduction to numerical algorithms used in scientific computing. The course begins with a review of the basic principles of numerical analysis, including sources of error, stability, and convergence. The theory and implementation of techniques for linear and nonlinear systems of equations and ordinary and partial differential equations are covered in detail. Examples of the application of these methods to problems in engineering and the sciences permeate the course material. Issues related to the implementation of efficient algorithms on modern high-performance computing systems are discussed.

If you have questions about the core courses requirements, contact the certificate program director, Michael Mueller.

Elective Course

One course required. This requirement is designed to give students expert training in their subject.   Elective courses can be selected from any graduate-level course on campus, provided the course contains a significant computational component. In special circumstances, advanced undergraduate level courses may also count towards the elective. Each student must seek approval of the certificate program director for the course they select as an elective. Approval may be granted for courses already taken. In general, the elective course will be offered by the student’s home department.  

Examples of suitable elective courses are:

This is not an exhaustive list.


Research Seminar

The ability to communicate their research to a broad audience, as well as interact with students across disciplines on shared tools and challenges, is an important skill for all students. In order to encourage both of these goals, as part of the certificate program students are required to give a research seminar on their thesis research sometime before graduation. Normally, this would be scheduled in the last year of research so there are significant results to the report. The seminar (a public talk of at least 30 minutes) may be organized and hosted directly by PICSciE, or it may be in the home department. In either case, the program administrator must be informed well in advance so that the seminar can be broadly advertised by PICSciE.


Thesis

The final requirement for the certificate is that the student’s thesis research must include a significant computational component, broadly defined. Since the role of computation differs across disciplines, the program will rely on the judgment of experts in the specific discipline to certify whether the goal of a “significant computational component” has been achieved. Thus, the student’s adviser is asked to write a short letter outlining the role of computation in the thesis, and to certify that this work required a significant computational component as part of the original research it contains.


Faculty Advisers in the Program

A significant fraction of the faculty rely on computation for their research, and all faculty are potential advisers for students in the program. Below we list some of the key faculty participants (including all the associated faculty with PICSciE). However, we emphasize this list is not exhaustive.


Program Director

Michael E. Mueller, Associate Professor, Department of Mechanical and Aerospace Engineering
Associated Faculty, Princeton Institute for Computational Science and Engineering
Associated Faculty, Andlinger Center for Energy and the Environment


Key Faculty Participants

  • David August, Computer Science
  • Ian Bourg, Civil and Environmental Engineering
  • Venkatramani Balaji, Atmospheric and Oceanic Science
  • Ravin Bhatt, Electrical Engineering
  • Adam Burrows, Astrophysical Sciences
  • Roberto Car, Chemistry
  • Rene Carmona, Operations Research & Financial Engineering
  • Jonathan Cohen, Psychology
  • Peter Constantin, Mathematics
  • Pablo Debenedetti, Chemical & Biological Engineering
  • Luc Deike, Mechanical and Aerospace Engineering
  • Mohamed Abou Donia, Molecular Biology
  • Barbara Engelhardt, Computer Science
  • Stephen Fueglistaler, Geosciences
  • Steve Jardin, Plasma Physics
  • Matthew Kunz, Astrophysical Sciences
  • Laura Landweber, Ecology & Evolutionary Biology
  • Naomi E. Leonard, Mechanical & Aerospace Engineering
  • Simon Levin, Ecology & Evolutionary Biology
  • Kai Li, Computer Science
  • Robert Lupton, Astrophysical Sciences
  • Sharad Malik, Electrical Engineering
  • Meredith Martin, English
  • Luigi Martinelli, Mechanical & Aerospace Engineering
  • Michael Mueller, Mechanical and Aerospace Engineering
  • Eve Ostriker, Astrophysical Sciences
  • Athanassios Panagiotopoulos, Chemical & Biological Engineering
  • Jonathan Pillow, Princeton Neuroscience Institute
  • Warren B. Powell, Operations Research & Financial Engineering
  • Frans Pretorius, Physics
  • Peter Ramadge, Electrical Engineering
  • Laure Resplandy, Geosciences
  • Jennifer Rexford, Computer Science
  • Alejandro Rodriguez, Electrical Engineering
  • Clarence Rowley, Mechanical & Aerospace Engineering
  • Szymon Rusinkiewicz, Computer Science
  • Matthew Salganik, Sociology
  • Annabella Selloni, Chemistry
  • Kaushik Sengupta, Electrical Engineering
  • H. Sebastian Seung, Princeton Neuroscience Institute
  • Mona Singh, Computer Science
  • Jaswinder Singh, Computer Science
  • David Spergel, Astrophysical Sciences
  • Anatoly Spitkovsky, Astrophysical Sciences
  • Brandon Stewart, Sociology
  • John Storey, Molecular Biology
  • William Tang, Astrophysical Sciences/Plasma Physics
  • Robert Tarjan, Computer Science
  • Jeroen Tromp, Geosciences
  • Olga Troyanskaya, Computer Science
  • Christopher Tully, Physics
  • Hakan Tureci, Electrical Engineering
  • Janet Vertesi, Sociology
  • Gabriel Vecchi, Geosciences
  • Bridgett vonHoldt, Ecology  and Evolutionary Biology
  • David Wentzlaff, Electrical Engineering
  • Claire White, Civil and Environmental Engineering
  • Ned Wingreen, Molecular Biology

 
Administration of the Program

PICSciE administers the program, and part of its responsibility is to appoint a program director each year, to advertise the program, to identify students who are working to achieve the certificate, and to ensure these students understand all of the requirements and to help them meet them.

Upon completion of all requirements, and at the receipt of an M.A./M.S. or Ph.D. diploma in his or her discipline, the program director will recommend them to the PICSciE Executive Committee, who must give final approval to award the certificate. Only the program director can recommend students for the certificate to the Executive Committee. The program director shall award the student a letter of certification in Computational and Information Science.

Contact Information

Michael E. Mueller, Graduate Certificate Program Director
609-258-5191
muellerm@princeton.edu


Ma. Florevel (Floe) Fusin-Wischusen, Institute Manager & Program Administrator
609-258-8071
floe@princeton.edu

More Information

For more information, see the Graduate Certificate Program FAQ page.