Continuous Integration
and
Automated Software Testing

David Luet

Princeton University
PICSciE, Research Computing/OIT,
Department of Geosciences/Climate Modelling Group

September 21, 2022
Outline

Git and GitHub Workflow for Collaborative Developments

Testing

Automatic Testing

References and Getting Help

Conclusion

Hands-on exercise with GitHub Actions with self-hosted runner
Outline

Git and GitHub Workflow for Collaborative Developments

Testing

Automatic Testing

References and Getting Help

Conclusion

Hands-on exercise with GitHub Actions with self-hosted runner
A Simple Collaborative Workflow
Problem with that simple workflow:
- It’s easy to push broken code to the shared repository.
- when others pull the changes and start adding their development, it can generate problems.
- this does not work well with more than two developers.
People can get . . .
Introducing Different Roles

To solve this issue, we introduce two roles with different permissions on the shared repository:

- **code maintainers**: push and pull (read/write) permissions.
- **developers**: only pull (read only) permission.
The developers need their own remote repo or branch

Since the developers cannot push to the shared repository they need either:
 ▶ their own branch in the shared repo:
 ▶ small team.
 ▶ See Managing a branch protection rule.
 ▶ their own fork of the repo: larger team.
Forking a Repository on GitHub
Forking a Repository on GitHub

As the GitHub user buildbot-princeton I want to fork: https://github.com/luet/factorial
Pull-Request: the Different Repositories
Pull-Request Steps

GitHub

Shared

Developer

Developer's Computer
Pull-Request Steps
Pull-Request Steps

GitHub

Shared

Developer

Developer's Computer

Open Pull-Request
Pull-Request Steps

GitHub

Shared

Developer

Developer’s Computer

MERGE
Advantages of Doing a Pull-Request?

- Gives us time to **review** the changes before committing them.
- So that **hopefully** no broken code gets committed to the shared repository.
Because honestly . . .
We need tests

- The problem with this simple workflow is that it can be hard for the code maintainers to know whether or not changes break the code.
- That’s why we need to build some tests.
Outline

Git and GitHub Workflow for Collaborative Developments

Testing

Automatic Testing

References and Getting Help

Conclusion

Hands-on exercise with GitHub Actions with self-hosted runner
Definition and Motivation

- **Debugging** is what you do when you know that a program is broken.
- **Testing** is a determined, systematic attempt to break a program that you think is working.
- **Testing for Quality Assurance**: make sure some changes didn’t change the results compared to the last version.
- When you write code with testing in mind, you write **better code** because you write **better interfaces**.
- **Good tests** provide a documentation for the code.
When to Write the Tests

- Test while you are writing the code.
- **Test incrementally:**
 - write part of a program,
 - test it,
 - add some more code,
 - test that,
 - and so on.
- Some programming techniques (e.g. Extreme Programming) even instruct you to write the tests first.
Testing for Functionality

- Unit testing: test one function.
- The entire code
- Test a set of functions:
 - It can be hard to design a test that will exercise a certain portion of your code by running the entire code.
 - Use libraries and drivers to isolate functions or a group of functions.
Regression Testing: An Example

- SPECFEM3D_GLOBE (Tromp et. al): simulates global and regional seismic wave propagation.
- This code produces seismograms, which are records of the ground motion in one direction at a measuring station as a function of time.
Regression Testing: Comparing Seismograms

\[\text{err} = \frac{\|\text{ref} - \text{syn}\|}{\sqrt{\|\text{ref}\| \|\text{syn}\|}} < TOL \]
An Actual Seismograms

GE.ZKR.MXE.sem.ascii

reference
latest

-0.00015
-0.0001
-5e-05
0
5e-05
0.0001
0.00015
-20 0 20 40 60 80 100 120 140 160 180
Other Tests

▶ Use different compilers to:
 ▶ check that it will compile.
 ▶ find programming mistakes.
 ▶ compare the results.

▶ Use different versions of scripting languages e.g. Python, Matlab.
▶ Run on different OS, hardware to make sure:
 ▶ the code runs.
 ▶ the code gives the same results.
Testing frameworks

- Google framework for C++: **Google Test**.
- Python: **unittest**
- Matlab
Example

- GitHub repo: https://github.com/luet/factorial/
- Simple Python code for computation of $n!$ recursively.
import sys

def recur_factorial(n):
 """Function to return the factorial of a number using recursion""
 if n == 1:
 return n
 else:
 return n*recur_factorial(n-1)

if __name__ == '__main__':
 arg = sys.argv
 print recur_factorial(int(arg[1]))
import sys

def recur_factorial(n):
 """Function to return the factorial of a number using recursion""
 if n == 1:
 return n
 else:
 return n*recur_factorial(n-1)

if __name__ == '__main__':
 arg = sys.argv
 print recur_factorial(int(arg[1]))

$ python factorial.py 4
24
import unittest
from factorial import recur_factorial

class TestReturnValue(unittest.TestCase):
 def test_value(self):

 #
 Test for a known return value

 self.assertEqual(recur_factorial(3), 6)

if __name__ == '__main__':
 unittest.main()
import unittest
from factorial import recur_factorial

class TestReturnValues(unittest.TestCase):
 def test_value(self):

 """Test for a known return value""
 self.assertEqual(recur_factorial(3), 6)

if __name__ == '__main__':
 unittest.main()

$ python test.py
.

Ran 1 test in 0.000s
OK
Outline

Git and GitHub Workflow for Collaborative Developments

Testing

Automatic Testing

References and Getting Help

Conclusion

Hands-on exercise with GitHub Actions with self-hosted runner
Why Run Test Automatically?

- The temptation when you develop code is to test only that part that you just wrote.
 - But there might be side effects to your changes.
 - So you want to run your entire suite of tests every time you make a change.
 - You are less likely to do that if the tests have to be run manually.
- Not all the developers have access to all tools.
- Once it’s set up you don’t have to spend any time running your tests.
Automation Servers

▶ Travis:
 ▶ good for small scripts, not parallel code.
 ▶ We are having issues with the PrincetonUniversity GitHub organization since they changed their pricing model.

▶ Buildbot.

▶ GitLab CI/CD.

▶ Bamboo (Atlassian).

▶ GitHub Actions:
 ▶ University has 50,000 min/month to run on GitHub’s servers.
 ▶ You have unlimited time when running on self-hosted runner (adroit).

▶ With Jenkins you can run on:
 ▶ the Research Computing clusters.
 ▶ any machine that you have ssh access to.
Test Automation with Jenkins

- Service offered by Research Computing.
- Jenkins is a web-based application for automatic testing.
- Simple user interface: easy to configure.
- The advantage other Travis is that with Jenkins you have access to the Research Computing resources:
 - Large number of cores.
 - Compilers.
 - Licensed software e.g. Matlab.
- Email cses@princeton.edu to request an account.
- You provide the machine where your code is going to be run.
- This can be any machine you have remote access to:
 - clusters (SLURM).
 - desktop machine (mac mini).
 - VM.
- Advantages:
 - Large number of cores.
 - Compilers.
 - Licensed software e.g. Matlab.
A Workflow with Jenkins and GitHub

Typical workflow:

1. A Pull-Request is open on GitHub.
2. GitHub sends a signal to our Jenkins server (webhook).
3. Jenkins runs the tests suite.
4. Jenkins reports the results of the tests on the GitHub web site.
 - If the changes passed the test, the code maintainer can merge the changes.
 - If the changes failed the test, the developer needs to solve the problem and push the changes to Github.
Scheduled Tests

▶ A Pull-Request only triggers short (< 15 min) tests.
▶ We use Jenkins to schedule longer tests:
 ▶ daily (< 1 hour).
 ▶ weekly (> 1 hour).
Some Currently Used Features

- There are many events that can trigger a test e.g.:
 - pull-request.
 - push.
 - scheduled.
- Jenkins can send emails outside of Princeton.
 - Only the code maintainers needs an account on Jenkins.
- Slack notifications.
- Jenkins provides status badges.
- It is not just for testing:
 - Automation server.
 - Jenkins Pipeline for Continuous delivery.
Getting Started

▶ Step by step tutorial (30 min):
 https://github.com/PrincetonUniversity/jenkins-getting-started
Outline

Git and GitHub Workflow for Collaborative Developments

Testing

Automatic Testing

References and Getting Help

Conclusion

Hands-on exercise with GitHub Actions with self-hosted runner
The Practice of Programming, by Brian W. Kernighan and Rob Pike.

Testing with Python:
- Testing your code: http://docs.python-guide.org/en/latest/writing/tests/#testing-your-code
We are here to help

- You can e-mail us at: cses@princeton.edu.
- Come to the help sessions Tuesdays (10:30-11:30 am) and Thursdays (2-3 pm). On Zoom only for now: https://researchcomputing.princeton.edu/support
- Job opportunity for Graduate students.
Outline

Git and GitHub Workflow for Collaborative Developments

Testing

Automatic Testing

References and Getting Help

Conclusion

Hands-on exercise with GitHub Actions with self-hosted runner
Conclusion

- I encourage you to, in order of urgency:
 - use a Version Control System.
 - design some tests.
 - run those tests automatically.
- In the long run, it will:
 - save you some time in debugging and troubleshooting.
 - generate a better organized and better written code.
Testing new idea with a sense of freedom

Let you modify your code with confidence that you are not breaking it.

Thank you Robin Higgins:
https://pixabay.com/users/robinhiggins-1321953/
Please fill out this survey before leaving:

I am especially interested in your feedback on the hands-on exercise.
Outline

Git and GitHub Workflow for Collaborative Developments

Testing

Automatic Testing

References and Getting Help

Conclusion

Hands-on exercise with GitHub Actions with self-hosted runner
GitHub Actions: running

1. push
 - modify the code

2. trigger
 - run the workflow
 - report to github

3. report

github.com

laptop

adroit
- run the workflow
- report to github

modify the code
GitHub Actions: configuration

- setup actions:
 - enable Actions on the repo.
 - set up the self-hosted runner.
 - configure your Actions: .github/workflows

connect

adroit
 - install runner software.
 - run within tmux session

laptop
 set up a private fork of my repo
https://github.com/PrincetonUniversity/github_actions_tutorial